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ABSTRACT

Recent work by the authors and their colleagues on the development of a second-order

closure model for high-speed compressible flows is reviewed. This turbulence closure is based

on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor

and the solenoidal part of the turbulent dissipation rate. A new model for the compressible

dissipation is used along with traditional gradient transport models for the Reynolds heat flux

and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the

remaining higher-order correlations in the Reynolds stress transport equation are modeled

by a variable density extension of the newest incompressible models. The resulting second-

order closure model is tested in a variety of compressible turbulent flows which include the

decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the

supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions

and the results of physical and numerical experiments are quite encouraging.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. Introduction

The ability to accurately predict high-speed compressible turbulent flows would have a

variety of important technological applications in the design of advanced supersonic and hy-

personic aircraft. Due to the wide range of scales exhibited in these flows, direct numerical

simulations - with all scales resolved - are impossible for the foreseeable future. Further-

more, major operational problems with large-eddy simulations in complex wall-bounded

geometries make their future application to these flows equally questionable. Consequently,

the method of choice for the calculation of such complex aerodynamic flows continues to

be based on Reynolds stress modeling and this is likely to remain true for the next several

decades. Unfortunately, many of the improvements in the Reynolds stress modeling of in-

compressible turbulent flows that have been developed during the past two decades have

not, for the most part, found their way into the calculation of the supersonic turbulent flows

of aerodynamic importance. Design calculations still tend to be based on variable density

extensions of simple eddy viscosity models such as that due to Baldwin and Lomax [1].

However, recent experience with incompressible turbulent flows indicate that significantly

improved predictions can be obtained from more sophisticated two-equation models and

second-order closures - particularly in flows with streamline curvature, a system rotation,

and buoyancy or other body force effects (see Refs. [2 - 4]). While there have been some

applications of second-order closure models to compressible turbulent flows [5 - 7], these

studies did not make use of the newer incompressible models and did not explicitly account

for dilatational effects in a physically consistent manner. This establishes the motivation for

the present paper which is to provide a much more systematic approach to the development

of compressible second-order closure models suitable for supersonic turbulent flows.

The compressible second-order closure model developed in this paper is based on the

Favre-averaged Reynolds stress transport equation. It will be supplemented with a transport

equation for the solenoidal part of the dissipation; the compressible dissipation is treated

using the Sarkar, et al. [8] model which algebraically relates this term to the product of

the solenoidal dissipation and the square of the turbulence Mach number. Gradient trans-

port models are used for the Reynolds heat flux, mass flux, and turbulent transport terms

along traditional lines. However, a new model for the pressure-strain correlation will be

implemented based on the model developed recently by Speziale, Sarkar, and Gatski [9]. In

addition, some of the newer developments in near wall turbulence modeling will be made use

of [10]. An overview of the model's performance in a variety of test cases will be provided

along with a brief discussion of needed future directions of research.

2. The General Model

Our analysis will be based on the governing equations of motion for an ideal gas which,

neglecting body forces and bulk viscosity effects, are as follows:

Contin'uit_l
Op

0-7+ (pu,),,= 0 (i)



Momentum

o(p=,) 2+ (p_',_',),J= -p,,-_(#_',J),, +b'(_<J+ =J,,)],_ (2)

Energy

O (pC_T) + (pC_uiT),i = -pui.i + • + (_T,, ),i (3)

where

p = pRT (4)

2 a
¢ ---_,j_,_ = -_(u,,,) + _(_,,j+ _,,)_,,j (s)

given that p is the density, ui is the velocity, p is the thermodynamic pressure, R is the ideal

gas constant,/_ is the dynamic viscosity, C,_ is the specific heat at constant volume, T is

the absolute temperature, a 0 is the viscous stress tensor, _ is the viscous dissipation, and

is the thermal conductivity. In (1) - (5), the Einstein summation convention applies to

repeated indices and ('),i denotes a gradient with respect to the spatial coordinate xl. Any

flow variable _" can be decomposed into ensemble mean and fluctuating parts as follows:

.r=y+.r' (6)

where, for a homogeneous turbulence, the mean _ can be taken to be a spatial average or,

for a statistically steady turbulence, it can be taken to be a time average. An alternative

decomposition based on mass weighted averages can be used wherein

7= _+_=" (r)

given that _ is the Favre average which is defined as

-T is)

As in the traditional studies of compressible Reynolds stress modeling, both (6) and (7) will
be used.

A direct averaging of Eqs. (1) - (3) yields the mean continuity, momentum and energy

equations which are as follows:

0_
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where u i =_ -p'u_/-_ is the turbulent mass flux, ' 'p Ui, i is the pressure-dilatation correlation,
and

" " (12)_'ij = ui uj

Q, = -"pt,_ui"""_ (13)
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are the Favre-averaged Reynolds stress tensor and Reynolds heat flux. Of course, p = _RT

is the mean pressure. The only assumption made in deriving (9) - (11) is that turbulent

fluctuations in the specific heat Cv can be neglected.

For high-Reynolds-number turbulent flows, the molecular diffusion terms containing

and ,¢ are dominated by the turbulent transport terms except in a thin sublayer near the wall.

If it is assumed that turbulent fluctuations in the viscosity, thermal conductivity and density

can be neglected in this region, then the molecular diffusion terms can be approximated as
follows:

2

(14)
2

y, - ,_T,_ _ _,_ (15)

Eqs. (14) - (15) are made use of in virtually all of the existing compressible Reynolds stress

models. The mean viscous dissipation _ can be decomposed as follows:

a,jui,j + ' '= a_jul, j

(16)
I

¢Yijul,j +- _t= -- - _TijUi, j + -p6.

where e - %ui,ffp is the turbulent dissipation rate. Hence, in order to achieve closure, we

need models for the following turbulence correlations:

(i) the Favre-averaged Reynolds stress T,j

(ii) the Favre-averaged Reynolds heat flux Q_

II(iii) the turbulent mass flux ui

(iv) the turbulent dissipation rate

(v) the pressure-dilatation correlation -'u'1j i,i"

This is subject to the primary assumption that turbulent fluctuations in the viscosity, thermal

conductivity, and specific heat can be neglected.

The Favre-averaged Reynolds stress tensor _'_j is a solution of the transport equation

9_
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are the third-order diffusion correlation, the deviatoric part of the pressure-gradient velocity

correlation, and the dissipation rate tensor. The viscous diffusion term is approximated by
the relationship

I I I Iu_ask+ _ja,_ _ _(_,s,_+ _,_,_+ _s_,,) (21)

which is obtained by an asymptotic near wall analysis neglecting fluctuations in the vis-

cosity as well as some higher-order correlations, particularly those involving dilatational

effects. (In a high-Reynolds-number turbulent flow, the viscous diffusion effects would only

be significant extremely close to the wall where the turbulence Mach number is small and,

hence, Morkovin's hypothesis may be invoked.) The pressure-diffusion correlation _ can
be written in terms of the Reynolds heat flux and mass flux as follows:

' ' -fiRTu_' + --"- ,,,v,P _i = p_rt¢_i .z .

Gradient transport models are used for these quantities in the following form [11]

(22)
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where K = ]_'ii is the turbulent kinetic energy and Ct, = 0.09, aT = 0.7, and ap = 0.5 are

dimensionless constants. The triple velocity correlation is modeled by using a traditional

gradient transport hypothesis as follows [4]

2 K 2

_':'_'Y_"_= --_co-i-( _,s,,,+ _,,,,s+ _-s,,,,) (25)

where Co = 0.11. Eq. (25) is the isotropized version of the gradient transport model

introduced by Launder, Reece, and Rodi [12]. The advantage of this formulation lies in the

fact that each turbulent transport term is coupled with a viscous term of the same form -

a feature that arises from the isotropization of the model for the triple velocity correlation

and the use of the true dissipation rather than the pseudo-dissipation in the formulation of

the viscous terms in (21).

Now, we have to discuss the modeling of the remaining correlations needed for closure

which consist of the deviatoric part of the pressure gradient-velocity correlation Ilij, the

pressure-dilatation correlation p'u_,,, and the dissipation rate tensor cij. Since our model is

developed for high turbulence Reynolds numbers, the Kolmogorov assumption of isotropy of

dissipation will be invoked sufficiently far from solid boundaries, i.e.,

2

_,. = _c6,, (2_)
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where _e ' '= aiiui,j is the scalar dissipation rate of the turbulence which appeared in Eq.

(16). Following the work of Sarkar et al. [8], the dissipation rate will be decomposed into

solenoidal and compressible parts as follows:

e = e, + ec (27)

I I I
where, for a homogeneous turbulence, _ea - _w_wi and _e_ = _/_(u_,i)4, 2 given that w_ is the

fluctuating vorticity. A comparable decomposition was recently introduced by Zeman [13]

in an analysis of eddy shocklets. Based on a simple asymptotic analysis, a model for the

compressible dissipation was derived by Sarkar et al. [8] wherein e= = alM2te, given that

Mt = (2K/'yRT) 1/2 is the turbulence Mach number, _ = _p/U_ is the ratio of specific heats,

and al is a dimensionless constant. A calibration based on direct numerical simulations of

compressible isotropic turbulence yielded the final model [8]

= (1 + aaMt_)ea (28)

with al = 1. The asymptotic analysis that led to the development of (28) also indicated that

the compressible dissipation is substantially larger than the pressure dilation correlation in

compressible isotropic turbulence [8]. Consequently, at this stage of the modeling we neglect

the pressure dilatation correlation, i.e., we set

= 0. (29)

Work is currently underway to develop more general models for the pressure-dilatation cor-

relation suitable for high-speed flows with strong mean velocity gradients.

The ezact transport equation for the solenoidal dissipation is of the general form

4

,3
(30)

given that fluctuations in the viscosity can be neglected. Here, T',, is the production of

dissipation due to deviatoric strains, q_, is the destruction of dissipation, and T),o is the

turbulent transport of dissipation (the precise form of the expressions for _P_,, ¢_, and :De° are

quite complicated and are omitted for simplicity). Consistent with the asymptotic analysis

for the solenoidal dissipation, the higher-order correlations in (30) will be approximated by

a variable density extension of the commonly used incompressible models. This yields a

modeled transport equation for e_ of the form

_

1 4
c_e_,_i,i- _2p K3"

(31)

K

where G'=I = 1.44, O=_. = 1.83, and C= = 0.15 are dimensionless constants. In the incom-

pressible limit, the standard form of the modeled dissipation rate equation is recovered [12].



It should be noted that, unlike in most previously proposed compressible models, mean di-

latational effects are accounted for exactly by the second term on the r.h.s, of (31) - a feature

that allows for the description of compressed isotropic turbulence as we will see later.

Finally, in order to close these equations, a model for the deviatoric part of the pressure

gradient-velocity correlation Hq is needed. We will assume that, to the first-order, His can

be approximated by a variable density extension of its incompressible form (i.e., the leading

order effects of compressibility are through changes in the density). We will use a variable

density extension of the SSG model which was recently derived by Speziale, Sarkar, and

Gatski [9] for incompressible turbulent flows. This model takes the form:

IIo. = + - 02¢(b kbk -  II6 j)
O

0

-C3K(b,kSjk + bj_Sik - 3b,.,,,_5o,,,,,6ij)

-C4K(b,k ITVjk+ bjk l[V_k)

(32)

where
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b_j = 2K
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7;' = -z_j_.i , II = b_b_j

(33)

(34)

(3s)

and C1 = 3.4., C_ = 1.80, C2 = 4.2, C3 = 1.25, C4 = 0.40, C* = 1.62 are dimensionless

constants. The SSG model was tested in a variety of incompressible, homogeneous turbulent

flows where it was shown to yield improved predictions over older models such as the Launder,

Reece, and R3di model (see Speziale, Sarkar, and Gatski [9] for more details).

The complete form of our proposed compressible second-order closure model has now

been provided for high turbulence Reynolds number flows. However, some discussion is

needed concerning the integration of this model to a solid boundary. For attached boundary

layers, wall functions can be used to bridge the outer and inner flows. If this is done, some of

the newer wall functions that have been developed for supersonic turbulent boundary layers

should be made use of (see He, Kazakia, and Walker [14] for an interesting discussion). On

the other hand, with minor modifications, this second-order closure model can be integrated

directly to a solid boundary - the preferred approach when there is separation or other

complex alterations of the wall boundary conditions. In order to integrate the second-order

closure model presented in this study to a solid boundary, two general alterations to the

model are needed:

(a) the destruction of dissipation term in the modeled dissipation rate equation (31) must

be damped to zero as the wall is approached. More precisely, C_2 must be replaced by C_2f2

where f2 _ 1 for Ret >> 1 and fa _ 0 as y _ 0 (here, y is the coordinate normal to the wall

and f2 is O(y 2) near the wall).



(b) A near wall correction to the deviatoric parts of the dissipation rate tensor and

pressure gradient-velocity correlation must be provided.

Variable density extensions of existing incompressible models can be used as a first approx-

imation (the reader is referred to Speziale, Abid, and Anderson [10], Launder and Shims

[15], and Gatski et al. [16] for a more detailed discussion of near wall modeling). However,

these near wM1 models involve wall damping functions that tend to be quite ad hoc. Con-

sequently, a new approach is currently under development wherein only the momentum and

turbulent kinetic energy equations are integrated to the wall; the individual components of

the Reynolds stress tensor, as well as the dissipation rate equation, are only integrated to

the edge of the viscous sublayer eliminating most of the need for wall damping.

Finally, it should be noted that for many practical applications to supersonic flows, it is
1

more convenient to integrate the total energy equation for E - C_T + _uiu_ rather than the

thermal energy equation (11). This equation takes the form

ZT(_E) + (_fiik),i = (_O'_j + _ou_ _ - _
uI,

-pu_ - _),_ +(a,juj ' '- p ui - -pE _ ),,

where the energy flux is given by

E--7. . _ 7,---7., 1 ._._ .
_ = ,,- ¢*i + rq_2j + -_u_ujuj

and the other correlations in (36) are modeled as previously described.

(36)

(37)

3. Applications of the Model

The first application to be considered is the decay of compressible isotropic turbulence

with no mean dilatation (i.e., all components of fi,,j are zero). In Figures l(a) - (b), the

results predicted by the model for the decay of the turbulent kinetic energy are compared

with those obtained from direct numerical simulations (DNS) for initial turbulence Mach

numbers Mr,0 of 0.1, 0.3, and 0.4 (these results are taken from Sarkar et al. [8]). It is clear

that the model does an excellent job in reproducing the trends of the DNS which indicate

a moderate increase in the decay rate of the turbulent kinetic energy with increasing turbu-

lence Mach number. (The results should not be compared from a quantitative standpoint

since the model is for high Reynolds number turbulence and the DNS is for RA = 15). This

Mach number dependence of the turbulence decay rate is due to the compressible dissipa-

tion and cannot be described by the commonly used compressible turbulence models which

neglect such dilatational effects. In Figure 2, the time evolution of the pressure-dilatation

correlation obtained from the DNS of isotropic turbulence [8] is shown for an initial turbu-

lence Mach number of Mr,0 = 0.5. It is clear that after the early transient effects due to the

initial conditions die out, the pressure-dilatation correlation becomes extremely small. This

validates the assumption made of neglecting the pressure-dilatation to the lowest (isotropic)

order.



The secondproblem that we will consideris the rapid compression or expansion of an

isotropic turbulence. In this problem, a decaying isotropic turbulence is subjected to the
mean dilatation

= 0 (38)
0 ½r

where F is a constant (F > 0 corresponds to an expansion whereas F < 0 represents a

compression). We will consider rapid compressions and expansions for which [rlK0/_0 >> 1.

The general model reduces to the following simple differential equations for this problem:

k = -_rK - (1 + alM_)_,

4 2

_o = -=re, -
3

For IrlKo/_0 >> i, the short-time solution to Eqs. (39)- (40) can be approximated as

2

K = Ko exp(-_rt)

4

e, = _o,oexp(-srt)

(39)

(40)

(41)

(42)

since the first term on the r.h.s, of (39) and (40) dominate. Hence, the integral length scale

predicted by the model is as follows:

A--Ao exp (_Ft) (43)

since A o¢ K3/2/_o.

The results given in (41) and (43) are identical to those obtained by Reynolds [17] based

on Rapid Distortion Theory (RDT). As correctly pointed out by Reynolds [17], many of the

commonly used compressible turbulence models, unlike our model, erroneously predict that

the integral length scale decreases with an expansion and increases with a compression. This

problem arises from the neglect of the exact mean dilatational term 4- --'_P_sui,i that appears

on the r.h.s, of (30).

Now, we will consider the problem of compressible, homogeneous shear flow. The model

predictions will be compared with the direct numerical simulations conducted recently by

Sarkar, Erlebacher, and Hussaini [18]. In this problem, an initially decaying compressible

isotropic turbulence is subjected to a uniform shear S with the corresponding mean velocity

0 S 0)
_2_,3= 0 0 0 .

0 0 0

gradients

(44)

In Figure 3, the time evolution of the turbulent kinetic energy predicted by our second-

order closure model is compared with the predictions of the Launder, Reece, and Rodi

(LRR) model and the results of direct numerical simulations [18] for the initial conditions



,.gKo/e = 7.18, R_ 0 = 15, and M:o = 0.2. It is clear from this figure that the new model

does a better job in reproducing the trends of the simulations. (Some differences would be

expected due to the fact that the model is for high turbulence Reynolds numbers whereas

the simulations are for low R_). As discussed earlier, the compressible dissipation model

(28) is based on the scaling
gc

-- constant. (45)
M_e,

In Figure 4, the DNS results of Sarkar et al. [18] for the time evolution of ec/M_e, is shown

for a variety of initial conditions. After the early time transient, ec/Mge, settles down to a

constant value in the range of 0.5 to 0.6 thus validating the scaling assumed in (45). (We still

leave az = 1 to account for the fact that we have neglected the pressure-dilatation correlation

- a term which in shear flow has a comparable effect to the compressible dissipation.)

The next problem that we will consider is the plane supersonic mixing layer. In this

problem, a supersonic stream mixes with a subsonic stream downstream of a splitter plate

(see Figure 5). The calculations that we will present are an extension of those conducted

by Sarkar and Balakrishnan [19] for a high-speed stream velocity Uz = 2500 m/sac and a

low-speed stream velocity U_. = 800 m/sac. Both streams have the same thermodynamic

quantities which are prescribed as follows: Tz = T_ = 800°K, Pz = P2 = 1 atm, and

Pl = P2 = 0.44 kg/m a. A convective Math number Mc and spreading rate C6 are defined by

Mo - (46)
a I -_- a 2

d-7= C6 UI+

where 6 is the thickness of the shear layer and a is the local speed of sound.

(47)

In Figure

6, the normalized spreading rate C6/(C6)o obtained from our second-order closure model is

compared with the experimental "Langley curve" for a variety of convective Mach numbers

Me. The comparison between the model predictions and experiments is quite good. In

contrast to these results, a variable density extension of either the Launder, Reece, and Rodi

model or the SSG model were not able to predict the dramatic drop in the spreading rate

that occurs for convective Mach numbers Mc > 1 as shown in Figure 6. Consequently, it is

clear that dilatational effects must be directly accounted for if supersonic shear layers are

to be properly described. In Figures 7 - 8, the normalized streamwise turbulence intensity

and turbulent shear stress predicted by the second-order closure model are compared with

experimental data (here, AU = Uz - U2). The predictions of the Launder, Reece, and Rodi

model are also displayed. It is clear from these results that our model predictions are well

within the range of the experimental data unlike those of the LRR model.

Finally, we will present some preliminary results for the supersonic flat plate turbulent

boundary with an adiabatic wall and with wall cooling [20]. These calculations were done by

a direct integration of this second-order closure model to the wall using damping functions

as discussed at the end of Section 2. In Figure 9, the normalized skin friction predicted

by the second-order closure model is compared with the Van Driest curve and experimental

data for a range of external Mach numbers 0 _< Me _< 10 (the Reynolds number based on

the momentum thickness Re0 = 10'). Clearly, the model predictions are in good agreement

9



with the experimental data. In Figure 10, the normalized skin friction predicted by this

second-order closure model for the supersonic flat plate boundary layer with wall cooling is

shown (M_ = 4, Re0 = 10 4, T_, = wall temperature, and T_,_ = adiabatic wall temperature).

Again, the model predictions are in reasonably good agreement with the Van Driest curve.

More detailed calculations of supersonic turbulent boundary layers are currently underway

(Spe_.iale and Abid [20]).

4. Concluding Remarks

A new and reasonably comprehensive second-order closure model has been developed for

high-speed compressible turbulent flows. The features that distinguish this new model from

previously proposed second-order closures for compressible turbulence lies in the explicit

treatment of dilatational effects on the turbulence dissipation rate and the use of recently

improved models for the pressure gradient-velocity and viscous diffusion correlations. Pre-

liminary tests of the model in a variety of homogeneous and inhomogeneous supersonic

turbulent flows were quite encouraging.

A substantial amount of research is still needed to refine the model. The major issues

that need to be further explored are as follows:

(1) the development of an anisotropic correction to the model for the pressure-dilatation

correlation valid for significant mean strain rates,

(2) the development of modeled transport equations for the Reynolds heat flux and mass

flux terms that transcend the simple gradient transport models now being used, and

(3) the development of better near wall models that incorporate more compressible turbu-

lence physics and are numerically robust.

In addition, the ability of this second-order closure model to predict the turbulence

statistics in compressible flows with strong shocks remains to be demonstrated. Furthermore,

if this model is to be extended to the hypersonic flow regime, real gas effects have to be

incorporated into the model. All of these issues are currently under investigation in our

ongoing research effort on compressible turbulence modeling.
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Figure 1. The decay of turbulent kinetic energy in compressible isotropic turbulence for

initial turbulence Mach numbers M,,0 - 0.1, 0.3, and 0.4. (a) Direct Numerical Simulations

[8], (b) Model Predictions.
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Figure 2. Time evolution of the pressure-dilatation correlation in compressible isotropic

turbulence obtained from Direct Numerical Simulations [8] (R_o = t5, Mr0 = 0.5).
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